

Series SQR1P/1

नोट

*

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित (I) (I) पृष्ठ 27 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में (II) 33 प्रश्न हैं।
- 🗱 (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए (III) Q.P. Code given on the right hand प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के * मुख-पृष्ठ पर लिखें । ×
- * (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से (IV) Please write down the * पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें। *
 - इस प्रश्न-पत्र को पढने के लिए 15 मिनट का (V) (V) समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।

प्रश्न-पत्र कोड Q.P. Code 56/1/2

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें । Candidates must write the Q.P. Code on the title page of the answer-book.

NOTE

Please check that this question paper contains **27** printed pages.

- Please check that this question paper contains **33** questions.
- side of the question paper should be written on the title page of the answer-book by the candidate.

serial number of the question in the answer-book before attempting it.

15 minute time has been allotted to this question read paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30the students will a.m., read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) **CHEMISTRY** (Theory) निर्धारित समय : 3 घण्टे अधिकतम अंक : 70 Maximum Marks: 70 Time allowed : 3 hours 56/1/2-11 1 P.T.O. **CLICK HERE** Get More Learning Materials Here : ≫ 🕀 www.studentbro.in

SET-2

सामान्य निर्देशः

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है खण्ड क, ख, ग, घ एवं ङ /
- (iii) खण्ड क प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का है ।
- (iv) खण्ड ख प्रश्न संख्या 17 से 21 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 2 अंकों का है ।
- (v) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 3 अंकों का है ।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं । प्रत्येक प्रश्न 4 अंकों का है ।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है ।
- (x) कैल्कुलेटर का उपयोग वर्जित है ।

खण्ड क

- 1. आयरन की सर्वाधिक स्थायी ऑक्सीकरण अवस्था है :
 - (A) + 2
 - (B) + 3
 - (C) + 4
 - (D) 2

2. CH_3MgBr और CO_2 में अभिक्रिया के पश्चात जल-अपघटन करने पर निर्मित उत्पाद है :

- (A) CH₃CHO
- $(B) \quad CH_3COCH_3$
- (C) HCOOH
- (D) CH₃COOH

56/1/2-11

Get More Learning Materials Here :

2

General Instructions :

Read the following instructions carefully and follow them :

- (i) This question paper contains **33** questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) Section A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) Section C questions number 22 to 28 are short answer type questions. Each question carries 3 marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) Section E questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- *(ix) Kindly note that there is a separate question paper for Visually Impaired candidates.*
- (x) Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1=16$

- **1.** The most stable oxidation state of Iron is :
 - (A) + 2
 - (B) + 3
 - (C) + 4
 - (D) 2
- **2.** The product formed as a result of reaction of CH_3MgBr and CO_2 followed by hydrolysis is :
 - (A) CH₃CHO
 - (B) CH₃COCH₃
 - (C) HCOOH
 - (D) CH₃COOH

56/1/2-11

Get More Learning Materials Here :

CLICK HERE

≫

P.T.O.

R www.studentbro.in

- 3. न्यूक्लियोटाइड संघटित होते हैं एक :
 - (A) पेन्टोस शर्करा और फ़ॉस्फ़ोरिक अम्ल से
 - (B) नाइट्रोजन युक्त क्षारक, पेन्टोस शर्करा और फ़ॉस्फ़ोरिक अम्ल से
 - (C) नाइट्रोजन युक्त क्षारक और फ़ॉस्फ़ोरिक अम्ल से
 - (D) पेन्टोस शर्करा और नाइट्रोजन युक्त क्षारक से
- 4. निम्नलिखित ऐल्किल हैलाइडों में से कौन-सा ${
 m S_N}1$ अभिक्रिया सर्वाधिक शीघ्रता से करता है ?
 - $(A) \quad (CH_3)_3 I$
 - $(B) \quad (CH_3)_3 Cl$
 - (C) $(CH_3)_3 Br$
 - (D) $(CH_3)_3 F$
- फ़ीनॉल, बेन्ज़ीन में द्वितय बनाता है जिसका वान्ट हॉफ कारक 0.54 है । इसकी संगुणन मात्रा है :
 - (A) 0·54
 - (B) **0.46**
 - (C) **0**·92
 - (D) 0·27

6. कोई अभिक्रिया $A_2 + B_2 \longrightarrow 2AB$ निम्न क्रियाविधि द्वारा होती है :


56/1/2-11

4

·····

Get More Learning Materials Here : 📕

- **3.** Nucleotides are composed of a :
 - (A) pentose sugar and phosphoric acid
 - (B) nitrogenous base, pentose sugar and phosphoric acid
 - (C) nitrogenous base and phosphoric acid
 - (D) pentose sugar and nitrogenous base
- 4. Which of the following alkyl halides will undergo $S_N 1$ reaction most readily ?
 - $(A) \quad (CH_3)_3 I$
 - $(B) \quad (CH_3)_3 Cl$
 - (C) $(CH_3)_3 Br$
 - (D) $(CH_3)_3 F$
- **5.** Phenol dimerises in benzene having van't Hoff factor 0.54. Its degree of association is :
 - $(A) \qquad 0{\cdot}54$
 - (B) 0·46
 - (C) 0·92
 - $(D) \qquad 0{\cdot}27$

6. A reaction $A_2 + B_2 \longrightarrow 2AB$ occurs by the following mechanism :

 $A_2 \rightarrow A + A \text{ (slow)}$ $A + B_2 \rightarrow AB + B \text{ (fast)}$

 $A + B \rightarrow AB (fast)$

Its order would be :

- (A) 1
- (B) 2
- (C) Zero
- (D) $\frac{1}{2}$

56/1/2-11

5

Get More Learning Materials Here : 📕

>>>

P.T.O.

- 7. सोडा लाइम के साथ सोडियम बेन्ज़ोएट को गर्म करने पर विकार्बोक्सिलन से बनता है :
 - (A) बेन्ज़ीन
 - (B) बेन्ज़ोइक अम्ल
 - (C) बेन्ज़ैल्डिहाइड
 - (D) टॉलूईन

 O
 O

 || ||

 8.
 $CH_3 - C - CH_2 - C - H$ का आई.यू.पी.ए.सी. (IUPAC) नाम है :

- (A) 1-ऑक्सोब्यूटेनैल-3-ओन
- (B) 1-ऑक्सोब्यूटेनैल
- (C) 3-ऑक्सोब्यूटेनैल
- (D) 3-ऑक्सोब्यूटेनोन

9. 573 K पर Cu के साथ तृतीयक ऐल्कोहॉलों के निर्जलन से बनता है :

- (A) ऐल्काइन
- (B) ऐल्कीन
- (C) ऐल्डिहाइड
- (D) कीटोन
- 10. आर्रेनिअस समीकरण में जब 1/T के साथ log k का ग्राफ खींचा जाता है, तो एक सीधी रेखा प्राप्त होती है जिसकी :

(A) ढाल
$$\frac{A}{R}$$
 है और अंत:खंड E_a है ।

(B) ढाल A है और अंत:खंड
$$\frac{-E_a}{R}$$
 है ।

(C) ढाल
$$\frac{-E_a}{RT}$$
 है और अंत:खंड log A है |

(D) ढाल
$$\frac{-E_a}{2\cdot 303 R}$$
 है और अंत:खंड log A है |

56/1/2-11

CLICK HERE

»

·····

R www.studentbro.in

Get More Learning Materials Here : 💻

- 7. Decarboxylation of sodium benzoate on heating with soda lime gives :
 - (A) benzene
 - (B) benzoic acid
 - (C) benzaldehyde
 - (D) toluene

8. The IUPAC name of $CH_3 - C - CH_2 - C - H$ is :

- (A) 1-oxobutanal-3-one
- (B) 1-oxobutanal
- (C) 3-oxobutanal
- (D) 3-oxobutanone
- 9. Dehydration of tertiary alcohols with Cu at 573 K gives :
 - (A) Alkyne
 - (B) Alkene
 - (C) Aldehyde
 - (D) Ketone
- **10.** In the Arrhenius equation, when log k is plotted against 1/T, a straight line is obtained whose :

(A) slope is
$$\frac{A}{R}$$
 and intercept is E_a .

(B) slope is A and intercept is
$$\frac{-E_a}{R}$$
.

(C) slope is
$$\frac{-E_a}{RT}$$
 and intercept is log A.

(D) slope is
$$\frac{-E_a}{2\cdot 303 R}$$
 and intercept is log A.

56/1/2-11

CLICK HERE

≫

Get More Learning Materials Here : 💶

P.T.O.

- 11. कक्ष ताप पर फ़ीनॉल, जलीय ब्रोमीन के साथ अभिक्रिया करके देता है :
 - (A) 2-ब्रोमोफ़ीनॉल
 - (B) 3-ब्रोमोफ़ीनॉल
 - (C) 4-ब्रोमोफ़ीनॉल
 - (D) 2,4,6-ट्राइब्रोमोफ़ीनॉल
- 12. प्रोटीन में ऐमीनो अम्लों का विशिष्ट क्रम में व्यवस्थित होना कहलाता है :
 - (A) द्वितीयक संरचना
 - (B) प्राथमिक संरचना
 - (C) तृतीयक संरचना
 - (D) चतुष्क संरचना

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है | इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए |

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है ।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

56/1/2-11

CLICK HERE

≫

Get More Learning Materials Here : 💻

- **11.** Phenol on reaction with aqueous bromine at room temperature gives :
 - (A) 2-bromophenol
 - (B) 3-bromophenol
 - (C) 4-bromophenol
 - (D) 2,4,6-tribromophenol
- **12.** The specific sequence in which amino acids are arranged in a protein is called :
 - (A) Secondary structure
 - (B) Primary structure
 - (C) Tertiary structure
 - (D) Quaternary structure

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.

56/1/2-11

9

CLICK HERE

>>

Get More Learning Materials Here : 💻

P.T.O.

13. अभिकथन (A) : अमोनिया की तुलना में ऐनिलीन प्रबलतर क्षारक है।

कारण (R) : ऐनिलीन में नाइट्रोजन परमाणु पर उपस्थित असहभाजित इलेक्ट्रॉन युगल, अनुनाद के कारण प्रोटॉनन के लिए कम उपलब्ध होता है ।

14. अभिकथन (A) : CH_3 – COOH की तुलना में O_2N – CH_2 – COOH का pK_a मान निम्नतर होता है ।

- 15. अभिकथन (A): संक्रमण धातुओं की कणन एन्थैल्पी उच्च होती है। कारण (R): ऐसा इसलिए है क्योंकि संक्रमण धातुओं के गलनांक निम्न होते हैं।
- 16. अभिकथन (A) : जल में NaCl मिलाए जाने पर क्वथनांक में उन्नयन प्रेक्षित होता है ।
 कारण (R) : क्वथनांक उन्नयन एक अणुसंख्य गुणधर्म है ।

खण्ड ख

17. (क) निम्नलिखित प्रत्येक अभिक्रिया के मुख्य मोनोहैलो उत्पादों की संरचनाएँ बनाइए : 1+1=2

(i)
$$CH = CH_2 + HBr \rightarrow$$

(ii) \bigcirc + Br₂ $\xrightarrow{\text{Utilainflyanew}}$

अथवा

(ख) निम्नलिखित के लिए कारण दीजिए :

- (i) ग्रीन्यार अभिकर्मक का विरचन निर्जलीय अवस्थाओं में करना चाहिए।
- (ii) ऐल्किल हैलाइड जलीय KOH के साथ ऐल्कोहॉल देते हैं जबकि ऐल्कोहॉली
 KOH की उपस्थिति में ऐल्कीन निर्मित होते हैं ।

56/1/2-11

10

Get More Learning Materials Here : 💶

1+1=2

13. Assertion (A) : Aniline is a stronger base than ammonia.

Reason(R): The unshared electron pair on nitrogen atom in aniline becomes less available for protonation due to resonance.

- **14.** Assertion (A): The pK_a of $O_2N CH_2 COOH$ is lower than that of $CH_3 COOH$.
- **15.** Assertion (A) : Transition metals have high enthalpy of atomization.

Reason(R): This is because transition metals have low melting points.

- **16.** Assertion (A) : When NaCl is added in water, elevation in boiling point is observed.
 - Reason(R): Elevation in boiling point is a colligative property.

SECTION B

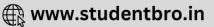
17. (a) Draw the structures of major monohalo products in each of the following reactions : 1+1=2

(i)
$$CH = CH_2 + HBr \longrightarrow$$

(ii)
$$\bigcirc$$
 + Br₂ $\xrightarrow{\text{UV light}}$

OR


(b) Give reasons for the following :


- (i) Grignard reagent should be prepared under anhydrous conditions.
- (ii) Alkyl halides give alcohol with aqueous KOH whereas in the presence of alcoholic KOH, alkenes are formed.

56/1/2-11

11

Get More Learning Materials Here : 📕

1+1=2

P.T.O.

- 18. क्या होता है जब D-ग्लूकोस को निम्नलिखित अभिकर्मकों के साथ अभिकृत किया जाता है ? 2
 - (\mathbf{a}) Br_2 जल
 - (碅) HCN
- 19. रासायनिक समीकरण लिखिए जब :
 - (क) पेन्टेन-3-ओन की H₂N NH₂ के साथ अभिक्रिया करने के बाद ऐथिलीन ग्लाइकॉल जैसे उच्च क्वथनांक वाले विलायक में KOH के साथ गरम किया जाता है।
 - (ख) सान्द्र NaOH को $(CH_3)_3C$ CHO के दो अणुओं के साथ अभिकृत किया जाता है ।
- **20.** आयरन इलेक्ट्रोड का विभव परिकलित कीजिए जिसमें Fe²⁺ आयन की सांद्रता 0·01 M है । (298 K पर E⁰_{Fe²⁺/Fe} = – 0·45 V) [दिया गया है : log 10 = 1]
- 21. अभिक्रिया की कोटि और आण्विकता के बीच दो अन्तर लिखिए।

खण्ड ग

22.यौगिक (A) ($C_6H_{12}O_2$), LiAlH4 से अपचयित होकर दो यौगिक (B) और (C) देता है ।यौगिक (B) PCC के साथ ऑक्सीकृत होकर यौगिक (D) देता है जो तनु NaOH के साथअभिकृत करके तदुपरान्त गर्म करने पर यौगिक (E) देता है । यौगिक (E) उत्प्रेरकीयहाइड्रोजनन करने पर यौगिक (C) देता है । यौगिक (D) और ऑक्सीकृत होकर यौगिक (F)देता है जो कि एकक्षारकीय अम्ल (अणु भार = 60) पाया गया । यौगिकों (A), (B), (C),(D), (E) और (F) की पहचान कीजिए । $6 \times \frac{1}{2} = 3$

56/1/2-11

Get More Learning Materials Here :

🕀 www.studentbro.in

2

2

2

18. What happens when D-glucose is treated with the following reagents ? 2

- (a) Br_2 water
- (b) HCN
- **19.** Write the chemical equations when :
 - (a) Pentan-3-one is treated with $H_2N NH_2$ followed by heating with KOH in high boiling solvent such as ethylene glycol.
 - (b) Two molecules of $(CH_3)_3C$ CHO are treated with conc. NaOH.
- 20. Calculate the potential of Iron electrode in which the concentration of Fe^{2+} ion is 0.01 M.

 $(E^{o}_{Fe}^{2+}/Fe} = -0.45 \text{ V at } 298 \text{ K})$ [Given : log 10 = 1]

21. Write two differences between order of reaction and molecularity of reaction.

SECTION C

22. Compound (A) (C₆H₁₂O₂) on reduction with LiAlH₄ gives two compounds (B) and (C). The compound (B) on oxidation with PCC gives compound (D) which upon treatment with dilute NaOH and subsequent heating gives compound (E). Compound (E) on catalytic hydrogenation gives compound (C). The compound (D) is oxidized further to give compound (F) which is found to be a monobasic acid (Molecular weight = 60). Identify the compounds (A), (B), (C), (D), (E) and (F). $6 \times \frac{1}{2} = 3$

56/1/2-11

13

P.T.O.

2

2

2

- 23. निम्नलिखित के उत्तर दीजिए : (कोई *तीन*)
 - (क) पेप्टाइड आबंध क्या है ?
 - (ख) किस प्रकार का आबंध DNA की द्विकुंडली को परस्पर जोड़े रखता है ?
 - (ग) निम्नलिखित में से कौन-सा पॉलिसैकैराइड है ?सूक्रोस, ग्लूकोस, स्टार्च, फ्रक्टोज़
 - (घ) जल में विलेय विटामिन और वसा में विलेय विटामिन प्रत्येक का एक-एक उदाहरण दीजिए।
- 24. (क) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए :

$$CH_{3}CH_{2}OH \xrightarrow{H^{+}} CH_{2} = CH_{2}$$

(ख) निम्नलिखित प्रत्येक अभिक्रिया के मुख्य उत्पाद लिखिए :

(i)
$$CH_3 - CH_2 - CH = CH_2 \xrightarrow{a) B_2H_6} b) 3H_2O_2/OH^- \rightarrow OH$$

(ii)
$$(ii)$$
 (ii) $(i$

- 25. (क) निम्नलिखित उपसहसंयोजन यौगिक का सूत्र लिखिए : पोटैशियम टेट्राहाइड्रॉक्सिडोज़िंकेट (II)
 - (ख) निम्नलिखित संकुलों को उनके विलयन की चालकता के बढ़ते हुए क्रम में व्यवस्थित कीजिए : $[Cr(NH_3)_5Cl]Cl_2, [Cr(NH_3)_3Cl_3], [Cr(NH_3)_6]Cl_3$
 - (ग) निम्नलिखित संकुलों द्वारा प्रदर्शित समावयवता की पहचान कीजिए :
 - $(i) \quad \left[\text{Co}(\text{NH}_3)_5\text{NO}_2\right]^{2\text{+}}$
 - $(ii) \quad [Co(en)_3]Cl_3 \\$

56/1/2-11

14

CLICK HERE

Get More Learning Materials Here : 💻

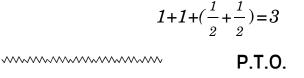
R www.studentbro.in

 $1+1+(\frac{1}{2}+\frac{1}{2})=3$

- **23.** Answer the following : (any *three*)
 - (a) What is peptide linkage ?
 - (b) What type of bonds hold a DNA double helix together ?
 - (c) Which one of the following is a polysaccharide ?Sucrose, Glucose, Starch, Fructose
 - (d) Give one example each for water-soluble vitamins and fat-soluble vitamins.
- **24.** (a) Write the mechanism of the following reaction :

$$\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OH} \xrightarrow[-443\,\mathrm{K}]{} \mathrm{CH}_{2} = \mathrm{CH}_{2}$$

 $(b) \qquad \text{Write the main product in each of the following reactions}:$


(i)
$$CH_3 - CH_2 - CH = CH_2 \xrightarrow{a) B_2H_6} b) 3H_2O_2/OH^-$$

(ii) H A and A and

- **25.** (a) Write the formula for the following coordination compound : Potassium tetrahydroxidozincate (II)
 - (b) Arrange the following complexes in the increasing order of conductivity of their solution :
 [Cr(NH₃)₅Cl]Cl₂, [Cr(NH₃)₃Cl₃], [Cr(NH₃)₆]Cl₃
 - $(c) \quad Identify \ the \ type \ of \ isomerism \ exhibited \ by \ the \ following \ complexes:$
 - $(i) \quad \left[\text{Co}(\text{NH}_3)_5\text{NO}_2\right]^{2+}$
 - (ii) $[Co(en)_3]Cl_3$

56/1/2-11

15

Get More Learning Materials Here : 📕 CLICK HERE 📎

R www.studentbro.in

26. (क) निम्नलिखित में से कौन-सा ऐलिलिक हैलाइड है ?

(i)
$$CH_3 - CH = CH - Br$$

(ii)
$$CH_2 = CH - CH - CH_3$$

 $\begin{vmatrix} \\ \\ \\ \\ Br \end{vmatrix}$

- (ख) क्लोरोबेन्ज़ीन और 2,4,6-ट्राइनाइट्रोक्लोरोबेन्ज़ीन में से कौन नाभिकरागी प्रतिस्थापन के
 प्रति अधिक अभिक्रियाशील है और क्यों ?
- (ग) C_4H_9Cl के किस समावयव का न्यूनतम क्वथनांक होता है ? $3 \times 1=3$
- 27. अभिक्रिया 2NO (g) + $Br_2(g) \rightarrow 2NOBr(g)$ के लिए निम्नलिखित प्रारंभिक वेग आँकड़े प्राप्त हुए :

प्रयोग संख्या	[NO]/mol L ⁻¹	[Br ₂]/mol L ⁻¹	प्रारंभिक वेग (mol L ⁻¹ s ⁻¹)
1	0.05	0.05	1.0×10^{-3}
2	0.05	0.12	$3 \cdot 0 \times 10^{-3}$
3	0.12	0.05	$9.0 imes 10^{-3}$

- (क) अभिक्रिया में NO और ${\rm Br}_2$ के प्रति कोटि क्या है ?
- (ख) वेग स्थिरांक (k) परिकलित कीजिए।
- (ग) अभिक्रिया वेग निर्धारित कीजिए जब NO और ${
 m Br}_2$ की सांद्रता क्रमश: 0.4 M और $0.2~{
 m M}$ है। 1+1+1=3

3

🕀 www.studentbro.in

^^^^

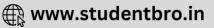
28. जब किसी चालकता सेल को 0.05 M KCl विलयन से भरा जाता है, तो 25°C पर इसका प्रतिरोध 100 ओम है । जब उसी सेल को 0.02 M AgNO₃ विलयन से भरा गया, तो प्रतिरोध 90 ओम था । AgNO₃ विलयन की चालकता और मोलर चालकता परिकलित कीजिए ।

(दिया गया है : 0.05 M KCl विलयन की चालकता = $1.35 \times 10^{-2} \text{ ohm}^{-1} \text{cm}^{-1}$)

56/1/2-11

- **26.** (a) Which of the following is an allylic halide ?
 - (i) $CH_3 CH = CH Br$
 - (ii) $CH_2 = CH CH CH_3$ $\begin{vmatrix} \\ \\ \\ \\ Br \end{vmatrix}$
 - (b) Out of chlorobenzene and 2,4,6-trinitrochlorobenzene, which is more reactive towards nucleophilic substitution and why?
 - (c) Which isomer of C_4H_9Cl has the lowest boiling point ? $3 \times 1=3$
- **27.** The following initial rate data were obtained for the reaction : $2NO(g) + Br_2(g) \rightarrow 2NOBr(g)$

Expt. No.	[NO]/mol L ⁻¹	[Br ₂]/mol L ⁻¹	Initial Rate $(mol L^{-1} s^{-1})$
1	0.02	0.02	$1.0 imes 10^{-3}$
2	0.02	0.12	$3.0 imes 10^{-3}$
3	0.12	0.02	$9{\cdot}0 imes10^{-3}$


(a) What is the order with respect to NO and Br_2 in the reaction ?

- $(b) \quad Calculate \ the \ rate \ constant \ (k).$
- (c) Determine the rate of reaction when concentration of NO and Br_2 are 0.4 M and 0.2 M, respectively. 1+1+1=3

28. When a certain conductivity cell was filled with 0.05 M KCl solution, it has a resistance of 100 ohm at 25°C. When the same cell was filled with 0.02 M AgNO₃ solution, the resistance was 90 ohm. Calculate the conductivity and molar conductivity of AgNO₃ solution. (Given : Conductivity of 0.05 M KCl solution = 1.35×10^{-2} ohm⁻¹cm⁻¹)

56/1/2-11

Get More Learning Materials Here :

>>

 \mathcal{B}

P.T.O.

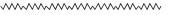
खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं । केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए ।

29. संयोजकता आबंध सिद्धांत (VBT) उपसहसंयोजन यौगिकों के बनने, चुंबकीय व्यवहार और ज्यामितीय आकृतियों का यथोचित स्पष्टीकरण देता है जबकि 'क्रिस्टल क्षेत्र सिद्धांत' उपसहसंयोजन यौगिकों में विद्यमान केन्द्रीय धातु परमाणु/आयन के d-कक्षकों की ऊर्जा की समानता पर विभिन्न क्रिस्टल क्षेत्रों के प्रभाव (लिगन्डों को बिंदु आवेश मानते हुए उनके द्वारा प्रदत्त प्रभाव) पर आधारित है । प्रबल तथा दुर्बल क्रिस्टल क्षेत्रों में d-कक्षकों के विपाटन (splitting) से विभिन्न इलेक्ट्रॉनिक विन्यास प्राप्त होते हैं । क्रिस्टल क्षेत्र सिद्धांत यह मानता है कि उपसहसंयोजन यौगिकों का रंग इलेक्ट्रॉन के d-d संक्रमण (transition) के कारण होता है । उपसहसंयोजन यौगिकों की धातुकर्म प्रक्रमों, विश्लेषणात्मक तथा औषध रसायन के क्षेत्र में महत्त्वपूर्ण अनुप्रयोग हैं ।

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) क्रिस्टल क्षेत्र विपाटन ऊर्जा क्या है ?
- (ख) क्रिस्टल क्षेत्र सिद्धांत के आधार पर संकुल [Ti(H₂O)₆]³⁺ के बैंगनी रंग का कारण दीजिए।
- (ग) $[Cr(NH_3)_6]^{3+}$ अनुचुम्बकीय है जबकि $[Ni(CN)_4]^{2-}$ प्रतिचुम्बकीय है । व्याख्या कीजिए, क्यों । [परमाणु क्रमांक : Cr = 24, Ni = 28] 2


अथवा

(ग) $[Fe(CN)_6]^{3-}$ एक आंतरिक कक्षक संकुल है जबकि $[Fe(H_2O)_6]^{3+}$ बाह्य कक्षक संकुल है, व्याख्या कीजिए, क्यों । [परमाणु क्रमांक : Fe = 26]

56/1/2-11

CLICK HERE

≫

1

1

2

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. The Valence Bond Theory (VBT) explains the formation, magnetic behaviour and geometrical shapes of coordination compounds whereas 'The Crystal Field Theory' for coordination compounds is based on the effect of different crystal fields (provided by ligands taken as point charges), on the degeneracy of d-orbital energies of the central metal atom/ion. The splitting of the d-orbitals provides different electronic arrangements in strong and weak crystal fields. The crystal field theory attributes the colour of the coordination compounds to d-d transition of the electron. Coordination compounds find extensive applications in metallurgical processes, analytical and medicinal chemistry.

Answer the following questions :

- (a) What is crystal field splitting energy ?
- (b) Give reason for the violet colour of the complex $[Ti(H_2O)_6]^{3+}$ on the basis of crystal field theory.

1

1

2

P.T.O.

R www.studentbro.in

(c) $[Cr(NH_3)_6]^{3+}$ is paramagnetic while $[Ni(CN)_4]^{2-}$ is diamagnetic. Explain why. [Atomic No. : Cr = 24, Ni = 28] 2

OR

(c) Explain why $[Fe(CN)_6]^{3-}$ is an inner orbital complex, whereas $[Fe(H_2O)_6]^{3+}$ is an outer orbital complex.

[Atomic No. : Fe = 26]

56/1/2-11

19

Get More Learning Materials Here : 💵 👉 🔼 🗠 👘

30. बैटरियाँ और ईंधन सेल गैल्वेनी सेल के अत्यन्त उपयोगी रूप हैं । विद्युत ऊर्जा के स्रोत के लिए प्रयुक्त कोई भी बैटरी अथवा सेल मूलभूत रूप से गैल्वेनी सेल होता है । तथापि, किसी बैटरी के प्रायोगिक उपयोग के लिए इसे हल्की तथा सुसंबद्ध होना चाहिए एवं प्रयोग में लाते समय इसकी वोल्टता में अधिक परिवर्तन नहीं होना चाहिए । मुख्यत: बैटरियाँ दो प्रकार की होती हैं — प्राथमिक बैटरियाँ और संचायक बैटरियाँ ।

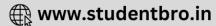
प्राथमिक बैटरियों में, अभिक्रिया केवल एक बार होती है तथा कुछ समय तक प्रयोग के बाद बैटरी निष्क्रिय हो जाती है एवं पुन: प्रयोग में नहीं लाई जा सकती, जबकि संचायक बैटरियाँ पुन:आवेशित की जा सकती हैं।

ऊष्मीय संयंत्रों से विद्युत उत्पादन बहुत अधिक उपयोगी विधि नहीं है तथा यह प्रदूषण का एक बड़ा स्रोत है । इस समस्या के समाधान के लिए ऐसे गैल्वेनी सेल अभिकल्पित किए गए हैं जिनमें ईंधनों की दहन ऊर्जा को सीधे ही विद्युत ऊर्जा में परिवर्तित किया जाता है, और इन्हें ईंधन सेल कहते हैं । ऐसे ही एक ईंधन सेल को अपोलो अंतरिक्ष कार्यक्रम में प्रयोग में लाया गया था ।

निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) प्राथमिक बैटरियाँ, संचायक बैटरियों से किस प्रकार भिन्न होती हैं ? 1
- (ख) मर्क्यूरी सेल का सेल विभव 1·35 V होता है तथा सम्पूर्ण कार्य-अवधि में स्थिर रहता है। कारण दीजिए।
- (ग) लेड संचायक बैटरी के पुन:आवेशन (रिचार्जिंग) में सम्मिलित अभिक्रियाएँ लिखिए। 2

अथवा


 $(extsf{v})$ अन्य गैल्वेनी सेलों की अपेक्षा ईंधन सेलों के दो लाभ लिखिए। 2

CLICK HERE

≫

56/1/2-11

Get More Learning Materials Here : 💶

1

30. Batteries and fuel cells are very useful forms of galvanic cell. Any battery or cell that we use as a source of electrical energy is basically a galvanic cell. However, for a battery to be of practical use it should be reasonably light, compact and its voltage should not vary appreciably during its use. There are mainly two types of batteries — primary batteries and secondary batteries.

In the primary batteries, the reaction occurs only once and after use over a period of time the battery becomes dead and cannot be reused again, whereas the secondary batteries are rechargeable.

Production of electricity by thermal plants is not a very efficient method and is a major source of pollution. To solve this problem, galvanic cells are designed in such a way that energy of combustion of fuels is directly converted into electrical energy, and these are known as fuel cells. One such fuel cell was used in the Apollo space programme.

Answer the following questions :

(a)	How do primary batteries differ from secondary batteries ?	1
(b)	The cell potential of Mercury cell is 1.35 V, and remains constant	
	during its life. Give reason.	1
(c)	Write the reactions involved in the recharging of the lead storage	

2

🕀 www.studentbro.in

OR

(c) Write two advantages of fuel cells over other galvanic cells.256/1/2-1121P.T.O.

CLICK HERE

 \gg

Get More Learning Materials Here : 💻

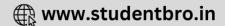
battery.

खण्ड ङ

- 31. (क) (i) निम्नलिखित के कारण लिखिए :
 - (1) Zn, Cd और Hg के गलनांक और क्वथनांक निम्न होते हैं।
 - (2) Cr^{2+} प्रबल अपचायक है जबकि Mn^{3+} प्रबल ऑक्सीकारक है, जबकि दोनों ही d^4 स्पीशीज़ हैं ।
 - (3) Cu^{2+}/Cu का E^{0} मान + 0.34 V है ।
 - (ii) निम्नलिखित रासायनिक समीकरण पूर्ण और संतुलित कीजिए :
 - (1) $KMnO_4 \xrightarrow{\eta \xi \eta} \rightarrow$

(2)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 6 \operatorname{I}^- + 14 \operatorname{H}^+ \longrightarrow 3+2=5$$

अथवा


- (i) Cu₂Cl₂ और CuCl₂ में से कौन-सा जलीय विलयन में अधिक स्थायी है
 और क्यों ?
 - (ii) f-ब्लॉक तत्त्वों का सामान्य इलेक्ट्रॉनिक विन्यास लिखिए।
 - (iii) निम्नलिखित में से कौन-सा जलीय विलयन में रंगीन होगा और क्यों ? Sc³⁺, Fe³⁺, Zn²⁺
 [परमाणु क्रमांक : Sc = 21, Fe = 26, Zn = 30]
 - (iv) आप सोडियम क्रोमेट से पोटैशियम डाइक्रोमेट कैसे प्राप्त कर सकते हैं ?
 - (v) संक्रमण धातुएँ तथा इनके यौगिक उत्प्रेरकीय सक्रियता क्यों दर्शाते हैं ? 5×1=5

≫

56/1/2-11

CLICK HERE

Get More Learning Materials Here : 🌉

SECTION E

31. (a) (i) Account for the following :

影

- (1) The melting and boiling points of Zn, Cd and Hg are low.
- (2) Of the d^4 species, Cr^{2+} is strongly reducing while Mn^{3+} is strongly oxidizing.
- (3) E^{o} value of Cu^{2+}/Cu is + 0.34 V.
- (ii) Complete and balance the following chemical equations :

(1)
$$\operatorname{KMnO}_4 \xrightarrow{\text{heat}} \rightarrow$$

(2)
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 6 \operatorname{I}^- + 14 \operatorname{H}^+ \longrightarrow 3+2=5$$

OR

- (b) (i) Out of Cu_2Cl_2 and $CuCl_2$, which is more stable in aqueous solution and why?
 - (ii) Write the general electronic configuration of f-block elements.
 - (iii) Predict which of the following will be coloured in aqueous solution and why?

 Sc^{3+} , Fe^{3+} , Zn^{2+}

[Atomic number : Sc = 21, Fe = 26, Zn = 30]

- (iv) How can you obtain potassium dichromate from sodium chromate ?
- (v) Why do transition metals and their compounds show catalytic activities ? $5 \times 1=5$

56/1/2-11

Get More Learning Materials Here : 📕

23

CLICK HERE 📎 🕀 www.studentbro.in

·····

P.T.O.

32. (क) (i) समान ताप पर O_2 गैस र

- (i) समान ताप पर O₂ गैस की तुलना में CO₂ गैस जल में अधिक विलेय होती है । इनमें से किसका K_H का मान उच्चतर होगा और क्यों ?
- (ii) जब रुधिर कोशिकाओं को 0.9% (द्रव्यमान/आयतन) से अधिक सोडियम क्लोराइड के जलीय विलयन में रखा जाता है तब उनका आमाप (साइज़) किस प्रकार परिवर्तित होता है ?
- (iii) किसी विद्युत-अपघट्य A_2B_3 का 1 मोलल जलीय विलयन 60% आयनीकृत होता है । विलयन का क्वथनांक परिकलित कीजिए । 1+1+3=5(दिया गया है : जल के लिए $K_b = 0.52 \text{ K kg mol}^{-1}$)

अथवा

- (ख) (i) 25℃ पर A और B के वाष्प दाब क्रमश: 75 mm Hg और 25 mm Hg हैं । यदि A और B को इस प्रकार मिलाया जाए कि मिश्रण में A का मोल-अंश 0·4 है, तो B की वाष्पीय प्रावस्था में मोल-अंश की गणना कीजिए ।
 - (ii) अणुसंख्य गुणधर्म को परिभाषित कीजिए । बृहदाणुओं के मोलर द्रव्यमान ज्ञात
 करने के लिए कौन-से अणुसंख्य गुणधर्म को वरीयता दी जाती है ?
 - (iii) सोडियम क्लोराइड और ग्लूकोस के सममोलर विलयन समपरासारी क्यों नहीं
 होते हैं ? 2+2+1=5
- **33.** निम्नलिखित किन्हीं **पाँच** प्रश्नों के उत्तर दीजिए : $5 \times 1 = 5$
 - (क) N,N-डाइएथिल-बेन्ज़ीनसल्फोनैमाइड क्षार में अविलेय होता है। कारण दीजिए।
 - (ख) ऐनिलीन फ्रीडेल-क्राफ्ट्स अभिक्रिया नहीं करती । क्यों ?
 - (ग) मेथिलऐमीन और ऐनिलीन में विभेद करने के लिए सरल रासायनिक परीक्षण लिखिए।

56/1/2-11

CLICK HERE

≫

R www.studentbro.in

Get More Learning Materials Here : 📕

- 32.
- (a) (i) At the same temperature, CO_2 gas is more soluble in water than O_2 gas. Which one of them will have higher value of K_H and why?
 - (ii) How does the size of blood cells change when placed in an aqueous solution containing more than 0.9% (mass/volume) sodium chloride ?
 - (iii) 1 molal aqueous solution of an electrolyte A_2B_3 is 60% ionized. Calculate the boiling point of the solution. 1+1+3=5(Given : K_b for $H_2O = 0.52$ K kg mol⁻¹)

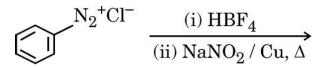
OR

- (b) (i) The vapour pressures of A and B at 25°C are 75 mm Hg and 25 mm Hg, respectively. If A and B are mixed such that the mole fraction of A in the mixture is 0.4, then calculate the mole fraction of B in vapour phase.
 - (ii) Define colligative property. Which colligative property is preferred for the molar mass determination of macromolecules ?
 - (iii) Why are equimolar solutions of sodium chloride and glucose not isotonic ? 2+2+1=5
- **33.** Answer any *five* questions of the following : $5 \times 1=5$
 - (a) N,N-diethyl-benzenesulphonamide is insoluble in alkali. Give reason.
 - (b) Aniline does not undergo Friedel-Crafts reaction. Why?
 - (c) Write a simple chemical test to distinguish between methylamine and aniline.

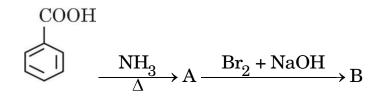
56/1/2-11

CLICK HERE

≫

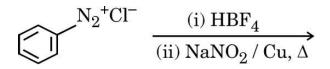


P.T.O.

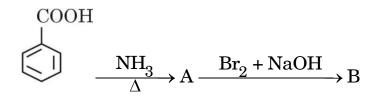

Get More Learning Materials Here : 💻

- (घ) गैब्रिएल थैलिमाइड संश्लेषण में सम्मिलित रासायनिक अभिक्रिया लिखिए।
- (ङ) आप ऐनिलीन का p-ब्रोमोऐनिलीन में रूपान्तरण कैसे सम्पन्न करेंगे ?
- (च) निम्नलिखित अभिक्रिया को पूर्ण कीजिए :

(छ) निम्नलिखित अभिक्रिया में A और B की संरचनाएँ लिखिए :



Get More Learning Materials Here :



- (d) Write the chemical reaction involved in Gabriel phthalimide synthesis.
- (e) How will you convert aniline to *p*-bromoaniline ?
- (f) Complete the following reaction :

(g) Write the structures of A and B in the following reaction :

Get More Learning Materials Here :

CLICK HERE

>>

·····

Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination,2024

SUBJECT NAME CHEMISTRY (Theory) (Q.P.CODE56_1_1,2,3)

General Instructions: -

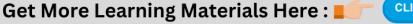
You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.

"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."

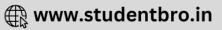
Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.

The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.


Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.


If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "**Extra Question**".

1 | Page

No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

A full scale of marks ______(example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.

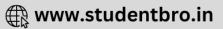
Ensure that you do not make the following common types of errors committed by the Examiner in the past:-

- Leaving answer or part thereof unassessed in an answer book.
- Giving more marks for an answer than assigned to it.
- Wrong totaling of marks awarded on an answer.
- Wrong transfer of marks from the inside pages of the answer book to the title page.
- Wrong question wise totaling on the title page.
- Wrong totaling of marks of the two columns on the title page.
- Wrong grand total.
- Marks in words and figures not tallying/not same.
- Wrong transfer of marks from the answer book to online award list.
- Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
- Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.

Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.

The Examiners should acquaint themselves with the guidelines given in the "**Guidelines for Spot Evaluation**" before starting the actual evaluation.


Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.

The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

2 | Page

MARKING SCHEME 2023

CHEMISTRY (Theory)- 043 QP CODE 56/1/2

Q.No	Value points	Mark
	SECTION A	
1	В	1
2	D	1
3	В	1
4	A, As carbon atom is missing in all the four structures so award 1 mark if attempted.	1
5	C	1
6	A	1
7	A	1
8 9	C B	1
10	B	1
10	D	1
12	B	1
13	D	1
14	A	1
15	C	1
16	B	1
	SECTION B	
17	(a)	
	Br	
	(j) CH-CH ₃	1
	(ii)	
	Br	
		1
		1
	OR	
17	(b)(i)It reacts with water to form alkane.	1
	(ii)Alcoholic KOH acts as a stronger base than aqueous KOH leads to elimination reaction of alkyl	
	halide. / alkoxide ions in alcoholic KOH acts as a stronger base due to which elimination reaction	1
	takes place.	
18	(a)	1
	СНО СООН	
	$(CHOH)_4 \xrightarrow{Br_a water} (CHOH)_4$	
	CH ₂ OH CH ₂ OH	
	(b)	
	CHO CHI CN	
	$(CHOH)_{4} \xrightarrow{HCN} (CHOH)_{4}$	1
	$(CHOH)_4 \xrightarrow{HCN} (CHOH)_4$	_
	CH ₂ OH CH ₂ OH	
19	(a)	
L	<u> </u>	L

3 | P a g e

	$CH_3 - CH_2 - C - CH_2 - CH_3 = CH_$	$\frac{H_2 N - NH_2}{KOHGlycol} = CH_3 - CH_2 - CH_2 - CH_2 - CH_3$		1
	$2(CH_3)_3C - CHO$ <u>conc.Na</u>	$(CH_3)_3 C-COO^- Na^+ +$		
		$(CH_3)_3C - CH_2 - OH$		1
20	$E_{Fe^{2+}/Fe} = E_{Fe^{2+}/Fe}^{o} - \frac{0}{2}$	$\frac{059}{2}\log\frac{1}{[Fe^{2+}]}$		1/2
	$= -0.45 \text{ V} - \frac{0.059}{2} \log \frac{1}{0.01}$ $= -0.45 \text{ V} - 0.059 \text{ V}$			1
21	= – 0·509 V			1/2
21	Order of reaction	Molecularity		1 x2
	(1)Can be zero or fractional.	(1) Can't be zero or fractional.		
	(2)Determined experimentally(3) Applicable for complex reactions	(2) Not determined experimentally(3) Not applicable for complex reactions.		
		(Any two)		
22	SECTION C (A) \rightarrow CH ₃ CH ₂ CH ₂ COO CH ₂ CH ₃ / CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃			½ x6
	(A) \rightarrow CH ₃ CH ₂ CH ₂ COO CH ₂ Cl (B) \rightarrow CH ₃ CH ₂ OH (C) \rightarrow CH ₃ CH ₂ CH ₂ CH ₂ OH (D) \rightarrow CH ₃ CHO (E) \rightarrow CH ₃ - CH = CH- CHO (F) \rightarrow CH ₃ COOH(Either structure)			/2 10
23	 a) A linkage which joins two amin b) Hydrogen bonding c) Starch d) Water soluble – Vitamin B / C Fat soluble – A, D, E, K (Any one) 		(Any Three)	1 x3
24				

4 | P a g e

56_1_2

CLICK HERE

(»

24		
27	(a)	
	Step 1: Formation of protonated alcohol.	1/2
	$\begin{array}{c} H \\ H \\ H - C \\ - C \\ - C \\ - O \\ - H \\ + H^{*} \\ \end{array} \xrightarrow{\text{Fast}} H \\ H - C \\ - C \\ - C \\ - O \\ - H \\ \end{array} \xrightarrow{\text{Fast}} H \xrightarrow$	
	H H H H Ethanol Protonated alcohol (Ethyl oxonium ion)	
	Step 2: Formation of carbocation: It is the slowest step and hence, the	
	rate determining step of the reaction. $\begin{array}{c} H \\ H \\ - C \\$	
	Н Н Н Н	
	Step 3: Formation of ethene by elimination of a proton. H H H H	
	$H - C^{\perp} C^{\dagger} $	
	H H Ethene	1/2
	(b) (i) $CH_3 - CH_2 - CH_2 - CH_2 - OH$	1
	(ii)	1
	Соон	1
25	a) $K_2[Zn(OH)_4]$	1
	(b) $[Cr(NH_3)_3Cl_3] < [Cr(NH_3)_5Cl]Cl_2 < [Cr(NH_3)_6]Cl_3$	1
	(c) (i) Linkage isomerism	1/2 +1/2
26.	(ii) Optical isomerism (a)	
20.		
	$CH_2 = CH - CH - CH_3$	1
	Br	
	 (b) 2, 4, 6- trinitrochlorobenzene, because of electron withdrawing nature of -NO₂ group. (c) (CH₃)₃C-Cl / tert-butyl chloride 	1/2 + 1/2
27		1
21	$h = h [NO]^p [D_r]^q$	
	Rate = $k [NO]^{p} [Br_2]^{q}$	
	$1.0 \times 10^{-3} = k [0.05]^{p} [0.05]^{q}$ Eq-1	
	$3.0 \times 10^{-3} = k [0.05]^{p} [0.15]^{q}$ Eq-2	
	L J L JEq-2	
	$9.0 \times 10^{-3} = k [0.15]^{p} [0.05]^{q}$ Eq-3	
	[5 0 × 10 - K[0 15] [0 05]Eq-3	
	On Comparing (eq1) and (eq2)	
	(1) $(1)^{q}$	
	$\left \left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^{q}$	
	q = 1	
	(eq1) ÷ (eq3)	

5 | P a g e

56_1_2

CLICK HERE

》

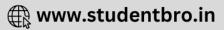
		1
	$\left(\frac{1}{9}\right) = \left(\frac{1}{3}\right)^p$	
	p = 2 (a) Order w·r·t NO = 2 Order w·r·t Br ₂ = 1	1/2 1/2
	(b) $1 \times 10^{-3} = k (0.05)^2 \times 0.05$	
	$k = \frac{1 \times 10^{-3}}{0.05 \times 0.05 \times 0.05}$	
	k = $8 L^2 mol^{-2} s^{-1}$ (Unit can be ignored)	
	(c) Rate = $k[NO]^2[Br_2]$	
	$= 8 \times (0.4)^2 \times (0.2)$ = 2.56 × 10 ⁻¹ mol L ⁻¹	1
28	Cell constant(G*) = Conductivity x Resistance = $1.35 \times 10^{-2} \times 100$ = 1.35 cm^{-1} Cell constant(G*) = Conductivity x Resistance	1
	1.35cm ⁻¹ = k x 90 1.35/90= k k=0.015 Scm ⁻¹ Molar conductivity(Λ_m)= k x 1000/C	1
	$= \frac{0.015 \text{ x}1000}{0.02}$ = 750 Scm ² /mol	1
	(Deduct ½ mark for no unit or incorrect unit) SECTION D	
29	(a) The energy used in the splitting of degenerate d- orbitals due to the presence of ligands in a definite geometry is called Crystal Field Splitting Energy.	1
	(b) $Ti^{3+}= 3d^1$ i.e. $t_{2g}{}^1e_g^0$ Due to d – d transition. (c)	1
	$Cr^{3+} = 3d^3$ \uparrow \uparrow \uparrow \uparrow	1
	Due to t_{2g}^{3} configuration hence paramagnetic. $- 3d \checkmark$ Ni ²⁺ = 3d ⁸ $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow$	
	 CN⁻ being strong field ligand pair up the electrons and hence diamagnetic. OR (c) CN⁻ being a strong ligand leads to the pairing of electrons in [Fe(CN)₆]³⁻ leading to d²sp³ 	1
	hybridization.H ₂ O being a weak ligand does not lead to the pairing of electrons in $[Fe(H_2O)_6]^{3^+}$ leading to sp ³ d ² hybridization. / In $[Fe(CN)_6]^{3^-}$, (n-1)d orbitals of central metal ion are used in hybridization (d ² sp ³). Hence inner orbital complex whereas in $[Fe(H_2O)_6]^{3^+}$ n d orbitals of central	1+1

6 | P a g e

56_1_2

CLICK HERE

>


	metal ion are used in hybridization $(sp^{3}d^{2})$.	
30	a)Primary batteries are not rechargeable while secondary batteries are rechargeable.	1
	(Or any other correct difference)	
	b)Overall reaction does not involve any ion in solution whose concentration can	1
	changeduring its lifetime. (c)	
	Cathode: $PbSO_4(s) + 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$	1
	Anode: $PbSO_4(s) + 2H_2O(1) \rightarrow PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^-$	1
	OR	
	(c) (i) More efficiency (ii) Pollution free	1+1
	SECTION E	
31	(a) (i)(1) Because of the absence of unpaired electrons in their	1
	d-orbitals resulting in weak bonding between the atoms/ due to presence of fully filled d orbitals , weak metallic bonding takes place.	
	(2) Because Cr is more stable in +3 due to stable t_{2g}^3 configuration while Mn is	1
	more stable in +2 due to stable d ⁵ configuration.	
	(3) Because of high $\Delta a H^0$ and low $\Delta_{hvd} H^0$, E^0 value for Cu is positive.	
	(ii)	1
	$2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$	
	1.	1
	$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + 6\mathrm{I}^{-} + 14\mathrm{H}^{+} \rightarrow 2\mathrm{Cr}^{3+} + 3\mathrm{I}_{2} + 7\mathrm{H}_{2}\mathrm{O}$	1
	Z: OR	
31	(b)(i)CuCl ₂ is more stable than Cu ₂ Cl ₂ as Cu ⁺² is more stable than Cu ⁺ due to high $\Delta_{hyd}H^0/$	1
	Cu^{+} in aqueous solution undergoes disproportionation, i.e., $2Cu^{+}(aq) \rightarrow Cu^{2+}(aq) + Cu(s)$	
	(ii) $(n-2)f^{1-14}(n-1)d^{0-1}ns^2$	1
	(iii) Fe ³⁺ , presence of unpaired electron leading to d-d transition.	-
	(iv)	1⁄2 +
	$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$	
	$Na_2Cr_2O_7 + 2 \text{ KCl} \rightarrow K_2Cr_2O_7 + 2 \text{ NaCl}$	1/
	(v) Because of their ability to show variable oxidation states and complex formation / provide	1/2
	large surface area.	/2
		1
32		
	(a)(i)As $K_{H} \propto \frac{1}{\text{Solubility}}$ of Gas	
	\therefore O ₂ gas has higher K _H ; because higher the K _H value, lower the solubility of gas in	1/2 + 3
	liquid.	72 - 7
	(ii) Blood cells shrink.	1
	(iii) $\Delta T_b = iK_b m$	
		1/2
	$T_b - T_b^0 = i \times 0.52 \text{ KKg mol}^{-1} \times 1 \text{ mol Kg}^{-1}$	1/2
	$\alpha = \frac{i-1}{i-1}$	
	n-1	
	n=5	

7 | Page

CLICK HERE

》

Get More Learning Materials Here :

	$0.6 = \frac{i-1}{5-1}$	
	i = 3·4	1/2
	$T_{b} - 373 \text{ K} = 3.4 \times 0.52 \times 1$	14
	T _b = 1·768 + 373 K	1/2
	T _b =374.768K(If boiling point of water is 373.15K then T _b = 374.918K) OR	
32	(b) (i) $P_T = p_A^{0} x_A + p_B^{0} x_B$	1/2
	$P_T = 75 \times 0.4 + 25 \times 0.6$	
	$P_{T} = 30 + 15 = 45 \text{ mm Hg}$	
	In Vapour phase	1/2
	$p_{\rm B} = y_{\rm B} \times P_{\rm T}$	
	$y_B = \frac{p_B}{P_T} = \frac{p_B^0 x_B}{P_T}$	1/2
	1 1	
	$y_{\rm B} = \frac{15}{45} = \frac{1}{3} = 0.33 \text{ mm Hg}$	1/2
	(ii)The property which depends upon the number of solute particles but not on the	1,1
	natureof solute. ;Osmotic pressure.	
	(iii)Because sodium chloride undergoes dissociation (i=2) in water while glucose does not./	1
	π= i C R T ;For NaCl , i=2 and for glucose i=1.	
33	a)Because N, N – diethyl-benzenesulphonamide does not contain any hydrogenatom	1 x5
	attached to nitrogen atom, it is not acidic, hence insoluble in alkali.	
	b) Due to salt formation with aluminum chloride, the Lewis acid, which is used as a	
	catalyst.	
	c) On reacting with nitrous acid at low temperature aniline forms benzene diazonium chloride	
	which on reacting with phenol forms orange dye whereas methylamine does not. (d)	
	0 0 0	
	$ \begin{array}{c} \overset{\parallel}{\longrightarrow} \scriptstyle$	
	Phthalimide N-Alkylphthalimide	
	$N - R$ $\xrightarrow{NaOH(aq)}$ $C - ONa^+ + R - NH_2$	
	C C ONA (1° amine)	
	(e)	
	0 0	
	\mathbf{NH}_{2} $\mathbf{H}-\mathbf{N}-\mathbf{C}-\mathbf{CH}_{3}$ $\mathbf{H}-\mathbf{N}-\mathbf{C}-\mathbf{CH}_{3}$ \mathbf{NH}_{2}	
	$\left[\begin{array}{c} \left(CH_{3}CO)_{2}O\\Pyridine\end{array}\right] \xrightarrow{Br_{2}} \left(CH_{3}COOH\right) \xrightarrow{OH \text{ or } H} \left(CH_{3}COH\right)^{2}$	
	Br Br	
	(f) NO_2	
	CONH ₂	
	$A \rightarrow A \rightarrow$	
	NH ₂	
	(ANY FIVE)	
~	$B \rightarrow $	
8	Page 56_1_2	

Get More Learning Materials Here : 📕

www.studentbro.in

9 F	o a	g e	
-------	-----	-----	--

